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To exploit available structural information about the cyclooxygenase enzyme for the virtual
screening of large chemical libraries, a docking-scoring protocol was tuned and validated. The
screening accuracy was assessed using a series of known inhibitors and a set of diverse a priori
inactive compounds that was seeded with known active ligands. The major parameters of the
DOCK algorithm were investigated. A large improvement of the results was obtained on
tweaking some of them. The generated complexes were rescored using six scoring functions.
In this way, the striking importance of this step was demonstrated, as well as the good
performances of DOCK energy and SCORE for this target. The results were further improved
via a consensus approach. As a first application, a subset of a large compound library was
screened using this protocol. Among the compounds that were selected for biological testing, a
third of them turned out to have a significant enzyme inhibition.

Introduction

The number of therapeutic target three-dimensional
structures determined by X-ray diffraction, NMR spec-
troscopy, or homology modeling is gradually increas-
ing.1,2 They have been important tools for medicinal
chemists to understand essential aspects determining
the ligand binding affinity. Many computational meth-
ods have been developed to take advantage of this
structural information in order to identify small mol-
ecules that bind or inhibit the activity of the biological
target.3 The first step in this process is usually referred
to as docking and consists of finding the low-energy
binding modes of a ligand within the active site of a
macromolecule. During a second step, named scoring,
the binding energy is estimated with a score or deter-
mined more precisely through time-consuming methods.
Such structure-based techniques can be involved at all
stages of the drug design process.3a,4,5 They are used to
generate new ideas about ways of improving an existing
ligand and for the development of new alternative
bonding skeletons. Due to computer power and algo-
rithm performance improvements, it is also possible to
screen large chemical libraries in a timeline that is
useful to the pharmaceutical industry.5 The biological
data for both active and inactive molecules are required
to make use of ligand-based techniques, whereas struc-
ture-based methods require only the 3D coordinates of
the target structure, preferably in complex with ligands.
Therefore, they can be used at the very beginning of the
drug-design process for preliminary screening. However,
limitations remain in this approach, which are the
subject of ongoing research efforts. The major problems

lie in the accuracy of scoring functions and the way to
include the protein flexibility as well as water penetra-
tion of the binding site.6 In this paper, a structure-based
approach is applied using the available structural
information about COX-2 in order to screen libraries to
find new potent inhibitors.

Cyclooxygenase catalyzes the first step of the biocon-
version of arachidonic acid to prostaglandins and throm-
boxanes. The widely used pharmacological class of
nonsteroidal antiinflammatory drugs (NSAIDs) acts via
inhibition of this enzyme.7 Two isoforms of this mem-
brane protein have been discovered.8 The first isoform,
COX-1, is constitutively expressed particularly in the
gastrointestinal tract and the kidneys and is responsible
for the physiological production of prostaglandins. The
other isoform, COX-2, is induced during the inflamma-
tion process. The COX-2 enzyme is a major therapeutic
target for inflammatory diseases, since selective inhibi-
tors have been shown to significantly reduce gas-
trointestinal and renal side effects compared to classical
NSAIDs. Indeed, the nonselective COX-2 NSAIDs are
inhibiting both the constitutive COX-1 isoform, which
is involved in the gastrointestinal and renal homeostatic
functions, and the inducible COX-2 isoform, the expres-
sion of which is increased by inflammatory stimuli.9
Research efforts to design selective COX-2 inhibitor
have resulted in a variety of antiinflammatory drugs
such as celecoxib (Celebrex),10 rofecoxib (Vioxx),11 and
valdecoxib (Bextra)12 (Figure 1). Other therapeutic
applications of selective COX-2 inhibitors are also under
investigation, including cancer13 and Alzheimer disease
prevention.14

Several 3D and 2D QSAR studies of COX-2 inhibitors
have been reported.15 As three-dimensional structures
of COX-2 complexed with various ligands are available,
structure-based methods can also be used for exploiting
this valuable structural information. Prediction of the
binding mode and explanation of the selectivity of small
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sets of ligands were attempted with accurate but time-
consuming techniques.16 Otherwise, automated docking
methods have been used to estimate the COX-2 affinity
for large molecular databases. A few virtual screening
studies have been reported in the literature.17 This
target was found to be somewhat demanding for the
docking methods, especially with regard to the scoring
stage.

This study aimed to find out a reliable and compu-
tationally efficient docking-scoring strategy for virtual
screening of large libraries for this demanding target.
The main docking parameters of the docking software
were investigated. They were tuned and validated using
two sets of compounds: a series of congeneric ligands,
the inhibitory potencies of which have been measured,
and another test set dedicated to assess the ability of
the protocol to distinguish between active and inactive
compounds. The complexes generated with DOCK were
rescored using six scoring functions, including some
which have never been tested for this target before. The
best scoring functions for this target were identified and
combined via a consensus approach. As a first applica-
tion, a subset of a large library made up of commercial
compounds was screened using this protocol, a dozen
compounds were selected, and their biological evaluation
is reported.

Results and Discussion
Protein Structure. As the X-ray crystal protein

structure is the experimental basis of docking simula-
tions, its choice and its preparation is of particular
importance. First, the two X-ray crystal structures of
SC-558 bound to COX-2 (PDB codes 6cox and 1cx2) were
compared. The orientations of the sulfonamide substitu-
ent differ between the two structures, as can be expected
because oxygen and nitrogen atoms cannot be distin-
guished in the electron density maps at the atomic
resolution of these structures. There are also slight
residue conformational changes. Concurrently, we con-
sidered the histidine 90 ionization state, which can only
be assigned by analyzing its hydrogen-bonding pattern
with the sulfonyl group of the ligand. The ε- and
δ-tautomers were tried.

Whatever the protein structure and the histidine
ionization state considered, most of the 10 best scored
binding modes found for SC-558 are in agreement with
the crystal structure. These poses only differ in the

conformation of the sulfonamide group. Nevertheless,
an oxygen atom of the sulfonyl group is found to interact
usually with the histidine. In that case, the His90
should be protonated on the Hε to form a favorable
hydrogen bond with the ligand. The energy score of the
ligand bound to the protein with the ε-tautomer of His90
is also a little higher than the score for the alternative
ionization state. A majority of the congeneric ligands
(about 85%) have a pose very close to the crystallo-
graphically determined binding mode of SC-558. This
ratio remains roughly constant, whatever the crystal
structure and histidine ionization state considered. As
the ligands of the congeneric set have the same kind of
scaffolds and substituents, they are expected to have
similar binding mode. Therefore, these ligands are
considered to be correctly positioned in the enzyme
pocket by this docking procedure. Among the remaining
15% of the congeneric ligands for which the binding
mode predicted differs from the experimentally deter-
mined structure, there is a larger ratio of moderately
active compounds. The induced fit of the protein that is
not taken into account during the docking process may
also stand for these wrongly positioned ligands, par-
ticularly for spiroheptene series. As for the screening
validation set, the enrichment factor obtained with the
crystal structure 1cx2, the His90 of which was proto-
nated on Hε, is overall higher than using the other form
(Table 1). These results suggest that the His90 is
eventually more likely in its ε-tautomer state. Anyway,
the inhibitors that bear a methyl sulfone substituent
are known usually to have higher affinity than the
corresponding sulfonamide derivatives, and they can
only make a hydrogen bond with the ε-tautomer of the
His90. As a result, this ionization form has been used
in the following. No significant variation of the perfor-
mances was observed using either of the crystal struc-
tures. Anyway, it is not really surprising owing to the
small conformational changes noticed between the 1cx2
and 6cox structure. In the following, we used the 1cx2
crystal structure.

Three sets of spheres were tested to assess which one
is the more suitable to define the enzyme binding
pocket. First, we checked that the cocrystallized ligand
SC-558 is docked correctly using any of the sphere sets.
Figure 3 demonstrates that this choice causes a dra-
matic variation in terms of discrimination between
active and inactive compounds for the screening valida-
tion set. The calculation speed was also significantly
affected. The initial sphere set yielded far better results
than the reduced sphere set: 27 active ligands were
found among the top scored versus 19, and 9 inactive
compounds were found versus 23. However, the calcula-
tion is 5 times quicker with the reduced set of spheres
(ca. 0.5 min per ligand on average vs 2.6 min). The
biased set of spheres derived from the cocrystallized
ligand structure exhibits results similar to the initial
sphere set, and the calculation duration is about the
same (2.3 min per ligand). These results suggest that
the initial set made up of 57 spheres represents a

Figure 1. COX-2 specific inhibitors on the market: celecoxib,
rofecoxib, valdecoxib, and SC-558.

Table 1. Enrichment Factor Obtained with the Two His90
Protonation States

% top scorers 3 6 12

EF for ε-tautomer 2.6 1.8 2.6
EF for δ-tautomer 1.1 1.6 2.3
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suitable definition for the binding pocket and it is used
in the following.

Conformational Sampling. In an attempt to im-
prove the modest results obtained in preliminary tries
using standard default parameters, we investigated the
main docking parameters of DOCK. The docking process
even failed to generate a correct binding mode for some
structural series of the congeneric ligands with these
parameters. Therefore, we first considered the ligand
conformational sampling. Actually, it turned out not to
be sufficient to treat properly such structures and a
related issue was noticed in fragment reattachment
using the anchor-first search method. Therefore, the
flexibility parameters were modified according to the
specific structural features of COX-2 inhibitors of the
congeneric inhibitors. However, such parameters heavily
affect the calculation speed as well, which makes it
necessary to find a compromise that is suitable for the
screening purpose.

First, a sampling was introduced for the torsion angle
between the sulfonyl group and a carbon within an
aromatic cycle, while default parameters do not allow
rotation of such bonds. The experimental binding mode
of SC-558 cannot even be reproduced using these latter
parameters. The same preferred torsion positions as for
sulfonyl-sp2-hybridized carbon bonds ((30°, 90°, and
150°) were assigned to sulfonyl-aromatic carbon links,
and it was specified that this torsion may be energy-
minimized. Using these modified parameters, the bind-
ing mode of SC-558 can be reproduced fairly well, as
mentioned in the previous section. Using default pa-
rameters, most of the congeneric set ligands, the scaffold
of which is composed of three phenyl cycles (Figure 2),
have poor ranks, although some of them are highly
active compounds (three-fourths have a pIC50 > 7.5).

Actually this failure stems from the rigid treatment of
this scaffold. Four torsion positions (0°, (90°, and 180°)
were allowed as well as the minimization of the bonds
between two aromatic carbons. In this way, better scores
are obtained for this series of ligands, so that their
ranking is improved.

The default flexibility allowed between the aromatic
cycles (only 0° or 180°) appeared not to be sufficient.
This causes steric hindrance into the inhibitor scaffold
during the fragment-linking step of the anchor-first
search method. Indeed, the three five- or six-membered
rings cannot be coplanar in such structures (Figure 2).
For most of the congeneric inhibitors, these steric
repulsions prevent the algorithm from reattaching the
fragments and properly building the ligands, during the
incremental construction of the anchor-first search
method. In an attempt to address this issue, we in-
creased the amount of steric clashes that were allowed
during conformational sampling by lowering the clash
overlap parameter from 0.5 to 0.3. Despite this energy
minimization step, some of the generated conformations
were still highly constrained. Therefore, we enlarged the
number of torsion positions allowed between the cycles
instead. Values of (90° were allowed as well as the
minimization of this torsion angle. In this way, com-
pound conformations are correctly generated and reli-
able scoring value can be calculated for all the ligands
of the congeneric set. Using these modified parameters,
the performances on the screening validation set are
significantly improved. It increases the enrichment
factor from 1.2 to 3. Above all, ranking of the ligands
with the triphenyl scaffold is remarkably improved.
These parameters are still widely applicable, since they
allow us to treat correctly the highly diverse molecules
belonging to the screening validation set. Finally, a loss
of speed in the calculation by 2 times is the price to pay
for the enrichment improvement using these modified
conformational sampling parameters.

Conformational Search and Matching. We com-
pared the simultaneous and anchor-first search meth-
ods. Using either of the two methods the best scored
pose of the cocrystallized ligand is similar to the crystal
structure. In addition, roughly the same fraction of
congeneric ligands has a binding mode that does not
deviate from that of the cocrystallized SC-558. Similar
results are also obtained for the congeneric set, but
virtually no discrimination between active and moder-
ately active ligands is obtained. In contrast, a better
discrimination between the active ligands and the

Figure 2. Common scaffolds of the 355 congeneric set ligands.

Figure 3. Comparison of the sets of spheres in terms of the
percent of active ligands among the 64 top-ranked molecules
of the screening validation set and calculation durations.
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diverse inactive compounds of the screening validation
set is achieved with a simultaneous search method
(Figure 4). 55% of active compounds of the validation
set are found among the top-ranked ligands, whereas
only 43% of them are retrieved using the anchor-first
search method. The enrichment factor corresponding to
active compounds reaches 3.1 (vs 2.4 with the anchor-
first search) and only three inactive compounds are
found among the top-scored ligands. The other mol-
ecules are moderately active compounds, as expected for
virtual screening. Furthermore, the calculations are
only slightly quicker using the anchor-first search
method when a set of diverse compound is docked. The
poorer results obtained with anchor-first method may
be attributable to the difficulty in finding an appropriate
anchor for COX-2 inhibitors, since protein-ligand in-
teractions are mainly hydrophobic. Even the multiple
anchor parameter did not preclude that problem. In-
tramolecular constraints in the tricyclic moiety, which
is common to the inhibitors of the congeneric set, may
also prevent the algorithm from performing properly.

The performances and calculation speed depend criti-
cally on the value of another parameter: the distance
tolerance. Consequently, special attention was brought
to find a suitable value for this parameter for both
conformational search methods. Using the anchor-first
search method, the best discrimination ability on the
screening validation set is obtained with 0.3 (Figure 5).
In addition, the speed of the calculations decreases,
when the distance tolerance is enlarged, so that the
value of 0.3 is a good compromise between the screening
performances and the computational speed. With the
simultaneous search method, the trend is more dra-
matic. Only the default value of 0.25 leads to calculation
sufficiently quick to allow application to virtual screen-
ing. Larger or smaller values decrease dramatically the
calculation speed (more than 10 min per ligand).

Other parameters were also inspected to assess their
influence on the protocol performances. The most suit-
able value for the node minimum parameter turned out
to be 4. Calculations are slower with the default value
of 3 and it does not yield better results. Besides, the
discrimination power on the screening validation set is
lower using a value of 5. For the conformation cutoff
factor, which controls the sampling of the simultaneous
search method, values of 4 and 5 gave similar perfor-
mances. There is a slight decrease in calculation speed
with 4. However, owing to the slender difference, the
default value of 5 was chosen in this study so as to keep
parameters as widely applicable as possible, in agree-
ment with the purpose of the virtual screening.

The score convergence with up to 10 runs using
different random seed numbers was investigated. An
average difference between one score and the minimum
value among five scores of 1.6 kcal is observed for the
355 ligands of the congeneric set. These score variations
are rather large, as most of the scores range from -30
to -50. In contrast, the rank variations are less signifi-
cant, since the correlation coefficient between the rank-
ings corresponding to above-mentioned case is higher
than 0.9. For the screening validation set, no significant
improvement is detected using the minimum value of
three or five estimates for each compound. The results
are just steadier, but the calculation durations rise
proportionally. For these reasons, a single seed value
was used for the screening application.

The above-described tuning of some parameters that
may affect the docking step accuracy led to a significant
improvement of the results compared with use of the
default parameters. In particular, a good discrimination
between active COX-2 inhibitors and inactive com-
pounds was obtained via the simultaneous search
method combined with an appropriate distance toler-
ance value. Suitable modifications of the ligands flex-
ibility parameters were also required to treat properly
series of known inhibitors. Despite these alterations
related to the studied target, the docking parameters
are still widely applicable, as demonstrated by the
correct treatment of the inactive compounds belonging
to the screening validation set. Besides, the calculation
speed has been kept at a reasonable level (ca. 2 min
per ligand) for the purpose of virtual screening. These
docking parameters combined with the DOCK energy
scores perform fairly well in discriminating between
active and inactive compounds of the screening valida-
tion set. This represents the usual virtual screening
conditions. In contrast, this protocol did not allow us to
distinguish as well the known active from the moder-
ately active ligands of the congeneric set. Although such
discrimination is not really required for virtual screen-
ing application, we tried to improve this latter result
as well as the discrimination ability on the screening
validation set by investigating the scoring step.

Rescoring. In an attempt to improve the results
obtained beforehand with DOCK energy, a rescoring
approach has been carried out using a variety of other
scoring functions. Figures 6 and 7 display the results
of the two validation sets for DOCK contact, SCORE,
FlexX, GOLD, ChemScore, and PMF. The performances
of the initial scoring function DOCK energy are also
reported for the purpose of comparison, as well as the

Figure 4. Comparison of the two conformational search
methods available in DOCK in terms of the ratio of active
ligands among the 64 top-ranked molecules of the screening
validation set.

Figure 5. Variation of the active ligand ratio among the top-
ranked molecules of the screening validation set according to
the distance tolerance values.

1058 Journal of Medicinal Chemistry, 2005, Vol. 48, No. 4 Mozziconacci et al.



constitution of the whole data set. This latter case
illustrates the results that would have been obtained if
the same number of molecules were randomly picked
from the whole database.

DOCK contact performs worse than DOCK energy for
both validation sets. Only six active compounds of the
congeneric set are found among the top-scored ligands
versus 11 with DOCK energy scores. Even a random
choice would be better, but the performance stems from
variations due to the rather small number of compounds
considered. Concerning the screening validation set, 22
active ligands are found among the 64 first ranked
compounds against 35 with DOCK energy. And, more-
over, there are 20 inactive compounds in the top-ranked

ligand subset, whereas only three were recovered with
DOCK energy. It is worth noting that this latter scoring
function is quite attractive for virtual screening on this
target, as illustrated by the results obtained for the
screening validation set. Fifty-five percent of the active
ligands are found among the 64 top-scored molecules,
while only a little more than 1% of the 230 inactive
molecules have a good score. Unfortunately, this scoring
function does not deal as well with the congeneric set.

The rescoring with SCORE results in a large improve-
ment for the set of congeneric ligands (Figure 6). Forty-
two percent of the top-ranked compounds are active.
Despite the overlap of the score profiles (Figure 8), the
enrichment factor reaches 2.3. Even with these very
attractive results, a rather poor correlation (r ) 0.44)
between the scores and the pIC50 values is observed.
Nevertheless, this correlation is slightly improved when
the pyrazole-type inhibitors are discarded (r ) 0.55). In
addition, this scoring function does a more satisfactory
job than DOCK energy scores for the screening valida-
tion set as well. Seventy-two percent of active ligands
are among the top-scored compounds. Accordingly, the
enrichment factor attains 4.1, which corresponds to
around three-fourths of the maximum possible enrich-
ment factor for this set of compounds. However, the ratio
of inactive compounds among the top scorers (false
positives) is larger in comparison with DOCK energy
results (12% vs 5%). The remaining compounds are
moderately active ligands, but they might be regarded
as hits in a virtual screening process.

Owing to these promising results obtained with the
rescoring approach, the scoring functions available in
CScore were also considered for further improvement.
Regarding the congeneric set, ChemScore performed the
best, leading to slightly better performances than
SCORE. Forty-five percent of the active ligands are
among the top-scored molecules, and the associated
enrichment factor is 2.5 (vs 2.3 with SCORE). The
correlation between the scores and the pIC50 values does
not appear to be higher using ChemScore than with
SCORE. An r coefficient of 0.47 is obtained when all
the congeneric ligands are considered, and it reaches
0.58 when the imidazole-type inhibitors (nearly one-
third of the set) are excluded. On the contrary, there is
no discrimination between active and moderately active
ligands using the FlexX scoring function. ChemScore
and FlexX result in slightly poorer estimates than
DOCK energy scores on the screening validation set.

Figure 6. Comparison of the rescoring results on the conge-
neric ligand set. The enrichment factors are reported in
brackets.

Figure 7. Comparison of the rescoring results on the screen-
ing validation set.

Figure 8. The SCORE scores distribution of the active,
moderately active ligands, and inactive compounds in the
screening validation set.
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Thus, 42% and 50% of the active ligands are respectively
found among the top-ranked molecules, and moreover,
the fractions of inactive compounds are clearly higher
compared to DOCK energy score (7% and 14% versus
less than 2%). The corresponding enrichment factors are
respectively 2.4 and 2.9 (against 3.1 with DOCK en-
ergy). The scoring function of GOLD and PMF per-
formed poorly for rescoring the molecules docked into
the COX-2 enzyme with DOCK. No enrichment is
observed on the screening validation set. Regarding the
congeneric set, GOLD yields a slight enrichment (1.7),
whereas PMF performs poorly. We also performed the
rescoring of the 10 first poses generated with DOCK and
reranked them using each of the scoring functions.
However, no improvement of the enrichment has been
obtained by so doing.

Some explanations could account for these results and
may give evidence for further improvement of the
docking-scoring protocol. Concerning the characteristics
of the COX enzyme cavity, the inhibition is mainly
mediated via lipophilic interactions within the very
confined binding pocket, whereas hydrophilic interac-
tions are supposedly not a predominant feature.18,17d

Estimation of the lipophilic interactions is one of the
main limitations of most of the current scoring func-
tions. Nevertheless, the SCORE, ChemScore, and FlexX
scoring functions include a specific term accounting for
this kind of interactions. That may explain their some-
what better results for this target compared to the
others. Due to the predominant lipophilic characteristics
of the binding pocket, the desolvation and entropic
phenomena are supposed to be of particular importance.
Only a few of the current scoring functions include a
term that takes them into account. This could explain
the good results of SCORE and ChemScore. As for
FlexX, the entropic term is reported to mainly reduce
the molecule size bias of this scoring function.17d PMF
is supposed to treat implicitly such phenomena through
the knowledge-based principle, but it has not turned out
to be successful in this case.

An electrostatic term was demonstrated to be also
required to evaluate properly the COX-2 ligand affinity,
since DOCK contact performs less well than DOCK
energy. On the other hand, this kind of interaction may
be overestimated in FlexX and Gold scoring functions,
so that compounds predicted to make mainly hydrophilic
interactions with the rim of the pocket turn out to be
falsely positive. These scoring functions also appeared
to perform worse than others like SCORE, which is
more tolerant of deviations of the hydrogen-bond inter-
actions from the ideal orientation.

Around 80% of the congeneric ligands bear at least
one fluorine atom, the interactions of which are known
to be hardly evaluated properly. However, no significant
correlation was found between the presence of this atom
and the ranking errors. On the other hand, PMF is
reported to have a poor potential for the halogen atoms,
due to an insufficient number of occurrences in the
PDB.19 This could explain why this scoring function
failed to treat correctly COX-2 ligands.

The COX-2 binding pocket is known to be globally
rigi,d except for a small region.20 Therefore, the induced-
fit phenomenon is not supposed to be of particular
importance. However, small alterations of the ligand-

protein contact surface can have a significant influence
on the hydrophobic interaction prediction. Thus, fine
flexibility treatment of the protein may be required to
obtain more accurate ligand placements and scores.
Anyway, slight differences in the congeneric ligand
structures yield large activity variations. This makes
this target very demanding for the scoring functions
that have to be all at once error-tolerant for the
inaccuracy and ligand induced fit of the structural data
and very sensitive to minor differences in the protein-
ligands interactions. More time-consuming techniques
are known to provide more accurate interaction energy
estimates,21 but it is not practically feasible to make use
of them for the purpose of high-throughput screening.

Outliers and Consensus. The rescoring results
demonstrated that a few of the scoring functions tested
yielded good discrimination results. Therefore, a con-
sensus approach, which consists of combining estimates
from a variety of scoring functions into a single consen-
sus score,17d,22a,23b,c,f may be profitable. The consensus
approach performs all the better because the scoring
functions have complementary ability; i.e., they do not
fail to identify the same active ligands or inactive
compounds. Therefore, we considered the compounds
that were poorly ranked by each scoring function. The
false-positive compounds represent the most awkward
case, because they would be wrongly chosen for biologi-
cal testing and increase the cost of this experimental
validation. In this study, compounds referred to as
inactive have not actually been assayed, but they are
probably so (see description of the screening validation
set composition). However, these false-positive com-
pounds could ideally correspond to the tiny number of
compounds that might be active. Seventeen molecules
are found to be among the 30 top-scored inactive
compounds for at least two of the best scoring functions
(SCORE, DOCK energy, ChemScore, and FlexX). By the
way, some of these molecules have a structure rather
similar to known COX-2 inhibitors, so they could turn
out to be promising compounds that are worth being
assayed. Conversely, the false-negative compounds (i.e.
for which a poor score is predicted while they are active)
would be missed during the virtual screening process.
There are three compounds for which the pIC50 is about
8 among the 30 poorest ranked active ligands with both
DOCK and FlexX. Some triphenyl-type ligands still
have rather poor ranking with DOCK energy, despite
the improvement obtained thanks to the conformational
sampling alteration. Conversely, none of the 30 poorest
scored active compounds of SCORE and ChemScore
have a pIC50 higher than 7.6, which is consistent with
the good results of these scoring functions in ranking
of the congeneric set ligands. No common structural
features were identified among these false-positive
compounds.

A consensus combination was carried out so as to take
advantage of the above-mentioned complementarity of
the scoring functions for this target. Only the scoring
functions that were found to perform fairly well for the
validation sets (DOCK energy, SCORE, FlexX, and
ChemScore) were considered. The results are sum-
marized in Table 2. With the consensus C1, all the
molecules that are found among the 64 top-ranked
compounds by at least one scoring function are consid-
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ered as active. The consensus C2 corresponds to the
molecules that are predicted as active according to at
least two scoring functions, and so on. Finally, the
molecules are active according to the consensus C4 if
they are predicted as active by the four scoring func-
tions. Here the consensus C2 performs as well as the
best scoring function (enrichment factor of 4.3 vs 4.2
with SCORE). It combines the four independent esti-
mates; as a result, we can assume the prediction is more
reliable. Additionally, the consensus C3 and C4 enable
us to select reduced subsets of compounds that are even
more likely to contain active compounds.

To further improve the performance of this consensus
approach, the score thresholds between the compounds
considered as active and inactive are tweaked according
to score profiles (such as in Table 3). In that way, the
number of molecules regarded as active is altered. This
fraction is slightly reduced for the scoring functions that
perform the best on the congeneric set in order to take
advantage of their discrimination ability, especially
regarding to the congeneric ligands. The score thres-
holds were shifted from -8.1 to -8.2 for SCORE and
from -39.3 to -39 for ChemScore. On the other hand,
the fraction of compounds considered as active was
increased for the scoring functions which showed a
modest discrimination ability by changing the score
limits from -41.2 to -35 for DOCK and from -16.9 to
-12 for FlexX. So it enables us to make the most of the
discrimination ability of the first scoring functions on
the congeneric set of ligands as well as to take advan-
tage of the second ones, which are widely applicable and
thus perform well on the screening validation set. In
that way, the consensus C3 performs even better than
the consensus C2 previously with an enrichment factor
of 4.6 compared to 4.3. (Table 3) The same trend is
observed with consensus C4 compared to consensus C3
using the previous limits. Finally, this approach allows
us to improve both the accuracy and the robustness of
the predictions.

Application of the Protocol to Virtual Screen-
ing. Since the above-presented results demonstrate that
the optimized docking-scoring protocol can serve as a
practical virtual screening tool to find COX-2 inhibitors,
it was applied to the virtual screening of a 1.2 million
compound library subset. As a first application, the
13 711 compounds of this library containing at least one

methyl sulfone or unsubstituted sulfonamide group were
docked into the COX-2 enzyme structure.

First, we focus on the top-scored compounds. Accord-
ing to the validation step results, we used the SCORE
and DOCK energy scoring functions. However, it has
been clearly demonstrated these scores can only be used
as a qualitative filter to select an active ligand enriched
subset. According to the comparison of the score profile
of the whole screened database with those of the active
and of the slightly active inhibitors and along with the
results of the consensus study, we chose score cutoffs
that would enable us to recover most of the active
ligands. By the way, it is worth noting that the best
score estimates for the screened molecules are roughly
the same as for the known active ligands for both of the
scoring functions, as we might anticipate. Using a limit
of -35 for DOCK scores, 7% of the screened compounds
and most of the known active inhibitors (95%) are
retrieved (Figure 9). This fraction of molecules is clearly
too large to imagine that they are all active, so a more
restricted selection is needed. However, the process is

Table 2. Consensus Results of the Four Best Scoring Functions

consensus single scoring functions

C1 C2 C3 C4 DOCK SCORE FlexX ChemScore

% active ligands retrieveda 97 73 38 13 55 73 50 42
% active ligandsb 39 75 83 100 55 73 50 42
enrichment factor 2.3 4.3 4.8 5.8 3.1 4.2 2.9 2.4
a The ratio of active ligands retrieved is the number of active ligands among the top-scored compounds divided by the total number of

active ligands in the initial database. b The ratio of active ligands is the number of active ligands among the top-scored compounds divided
by the number of top-scorers considered.

Table 3. Consensus Results after Active-inactive Threshold
Tweaking

DOCK, SCORE,
FlexX, ChemScore

DOCK,
SCORE

C1 C2 C3 C4 C2

% active ligands retrieved 98 95 78 36 65
% active ligands 27 43 81 96 83
enrichment factor 1.6 2.5 4.6 5.5 4.7

Figure 9. The DOCK energy (top) and SCORE (bottom) scores
distribution of the compounds in the screening validation set
and in the set of compounds that bear a sulfonyl group.
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expected to discard most of the inactive compounds and
the molecules that DOCK failed to dock correctly. Using
a threshold of 7.5 for the SCORE estimates, only a little
more than 1% of the screened compounds are retrieved
(Figure 9), which is much more in agreement with the
common HTS hit rates.24 Nevertheless, this limit would
have enabled us to identify 98% of the active ligands of
the congeneric set and about 67% of the slightly active
ligands. The score limits that have been chosen are
rather generous compared to the validation step because
a virtual screening protocol is mainly expected to
identify original structures, even if they are not highly
active. Anyway, the hits found with virtual screening
need to be chemically optimized later. At this stage, a
set of 149 compounds was selected with the two score
thresholds.

Then the selection was filtered out using geometric
criteria that derived from the putative binding modes
generated by docking. First, the compounds whose
sulfonyl group is not predicted to interact with the same
residues as in the crystal structures were discarded.
This is related to the initial selection of molecules for
docking the sulfonyl group, which is supposed to confer
COX-2 selectivity to them. However, the sulfonyl group
needs to be correctly located so that the choice of this
kind of ligands would be worthwhile. Second, the
compounds that clearly protruded from the enzyme
binding pocket were discarded by checking on the 3D
coordinates. Such binding modes do not make sense,
since the COX enzyme is opened toward the cell
membrane, which is not present in the 3D structure
used in this study.

The putative binding mode of the remaining 69
molecules was eventually inspected to check visually the
ligand-protein interactions. Eighteen of these molecules
have a diaryl heterocycle moiety. We expected to find
such compounds that are similar to known inhibitors
with a binding mode comparable to the experimentally
determined structure. This represents an extra valida-
tion of the docking-scoring protocol. However, such a
virtual screening study aims to discover alternate
chemotypes. For that reason, we focused on the other
selected molecules. Thirty-eight of them have a linear
structure; i.e., they are not branched, and as a conse-
quence they cannot fill the whole binding pocket of the
enzyme, unlike known selective inhibitors. Strong in-
teractions could provide these ligands with a significant
affinity, but they are less likely to be selective of the
COX (and COX-2 primarily) enzyme because of the
defective fit with the binding site. The 13 remaining
compounds are all the more appealing in such an
approach because they fill quite well the binding site
and they are less similar to known COX-2 inhibitors
than the first mentioned molecules. Among all these
compounds, 20 were chosen for in vitro biological testing
and 12 ended up being available from suppliers (Table
4).

These compounds were assayed for their ability to
inhibit COX-2 using a human enzyme immunoassay
according to the manufacturer’s instructions.25 Four of
the 12 tested compounds were found to have an enzyme
inhibition greater than about 50% at a concentration
of 1 µM (Table 4). Moreover, two molecules have an
inhibition greater than 60% and the inhibition is lower

than 25% for only three compounds. This ratio of active
compounds has validated our virtual screening protocol.
Moreover, the choice of molecules that all bear a sulfonyl
group as a first subset to be screened does not introduce
a significant bias in this study, because this structural
feature is related to the inhibitor selectivity for COX-2
rather than their affinity. Furthermore, compounds
containing a sulfonamide group are extensively used as
therapeutics (e.g. carbonic anhydrase inhibitors,26 an-
tidiabetic, antibacterial, antimalarial drugs). Therefore,
this chemical group is far from specific to COX-2
inhibitors. As the selectivity is of special importance for
the pharmacological use of the COX-2 inhibitors, the
compounds were also assayed for their ability to inhibit
COX-1 isoenzyme, and these results are reported in
Table 4. Compounds 10 and 11 end up having both a
good inhibitory activity and some selectivity. However,
these experimental data are not related to any of the
docking results. By the way, the techniques employed
in this study are definitely not accurate enough to
investigate such a subtle phenomenon that has been
hardly treated by more precise methods. Even the best
measured enzyme inhibition values do not necessarily
ensure an especially high COX-2 affinity. Anyway, these
hits would have to be optimized and they turn out to be
attractive enough for this virtual screening approach
owing to their originality. In fact, the introduction of
an heteroatom or a carbonyl link between the hetero-
cyclic and the phenyl ring lacking the methyl sulfone is
reported to result in active and selective compounds in
the diaryl heterocycle-type series.27 On the contrary, in
compound 4, an amide linkage is introduced between
the heterocyclic ring and the phenyl ring which bears
the sulfonamide group. Compound 6 is somewhat struc-
turally related to the nimesulide series, but it differs
in many points. Concerning the compounds 10 and 11,
they are loosely linked to sulfonamide analogues of the
fenamic acid NSAIDs. No significant correlation was
noticed between the activity values and the DOCK
energy or SCORE scores. However, the three ligands
that have the highest SCORE estimates turned out to
be among the four most active molecules.

Conclusion

This study aimed to exploit the structural information
available about the COX-2 enzyme to adapt a virtual
screening protocol that can be used for identifying new
original inhibitors. First, the main docking parameters
of DOCK were optimized so as to deal correctly with a
series of congeneric diaryl heterocycle inhibitors. The
choice of the sphere set that defines the active site, some
conformational sampling, and the matching parameters
appear to be of special importance. Compared to the
default settings, these tweaked parameters led to a
significant improvement of the discrimination ability
between active and inactive compounds, while the
calculations were kept sufficiently quick to allow ap-
plication to virtual screening. For the same purpose, we
also made sure that this protocol could still be applied
to diverse molecules.

Then the rescoring of the protein-ligand complexes
generated with DOCK via six scoring functions sug-
gested that this step is crucial. DOCK energy turned
out to perform better than most of the other commonly
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Table 4. Structures, Inhibitory Potencies, and Calculated Scores of the 12 Molecules Chosen for Biological Testing

a Ordered from ChemDiv56 b Ordered from ChemBridge57 c Provided by the NCI58 d Measured at a concentration of 1 µM using a
human enzyme immunoassay25
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used scoring functions. However, SCORE dramatically
improved the results for the congeneric set of ligands
while this scoring function has demonstrated a good
discrimination ability on the screening validation set
as well. Assumptions were proposed to explain the
scoring function performances on this target. This
comparison study also provides a deeper understanding
of their advantages and limitations and may serve as a
starting point for an equivalent work on targets that
have similar properties. In addition, a consensus ap-
proach turned out to further improve the results as it
combines the estimates of the four scoring functions that
were found to perform the best and appeared to com-
plete each other well.

The good enrichment factor obtained on the screening
validation set suggests that this protocol is appropriate
for searching potential COX-2 inhibitors through virtual
screening of chemical libraries. The first application of
this protocol to screen a set of compounds bearing a
sulfonyl group was presented. Attractive results were
obtained. Some of the best scored and correctly located
compounds are fairly similar to known potent inhibitors.
In addition, other more original molecules were assayed
and one-third of the dozen tested compounds ended up
inhibiting the COX-2 enzyme. This represents an ex-
perimental validation of the docking-scoring protocol
setup in this study.

Now, we plan to apply this promising protocol to the
screening of larger and more diverse chemical libraries
gathered in the laboratory in order to propose more
original molecules for biological testing. We have been
working on the prefiltering of these libraries so as to
avoid wasting computational power with molecules
which are not ‘druglike’ by today’s standards.28a In
addition, some terms of the best scoring functions
identified in this work could be altered to adapt them
to this target and further improve the results. The
hydrophobic terms would be probably the most critical
to refine. We have also compared and investigated the
combination of this docking-scoring method and 2D-
QSAR techniques that are used in the laboratory.28b,29

The ligand alignment derived from docking could also
be used as a basis for 3D-QSAR studies that may yield
more precise affinity predictions.

Materials and Methods

Docking. The widely distributed molecular docking soft-
ware DOCK 4.0130 was used to perform flexible docking of the
molecules into the protein structure, which was kept rigid. It
utilizes a sphere-matching algorithm to fit ligand atoms into
a set of spheres that fills the binding pocket. The ligand is
divided into rigid fragments, and a conformational search prior
to docking or incremental construction is used to treat ligand
flexibility. After on-the-fly energy minimization of the gener-
ated complexes, ligands are ranked according to a gridded
energy score. A large number of DOCK parameters can be
altered to control each stage of the algorithm. Starting from
the default values31 and previous studies,32 we tweaked these
parameters in accordance with the specificity of the target
considered. Moreover, due to the screening application pur-
pose, it was necessary to make a compromise between the
speed and the precision of the calculations. A brief description
of the algorithm and the associated parameters investigated
in this work is given below.

The first docking stage is a conformational search. A
collection of rigid segments separated by rotatable bonds is
identified in the ligand structure. The ring flexibility is ignored

in the DOCK algorithm. Using the torsion drive method, low-
energy dihedral values are tried for each torsion previously
defined. These low-energy angles are stored in flat files that
can be edited. Alterations of these parameters have been
tested. During this process some intramolecular overlaps are
allowed using the default value of 0.5 for this parameter,
except when it is mentioned explicitly. Afterward, two methods
are proposed in DOCK: simultaneous search and anchor-first
search. Using the simultaneous search method, the entire set
of molecule conformations is generated in one step. All torsions
are searched prior to the orientation search, so that each
conformation is docked independently. The comprehensiveness
of the conformational sampling is mainly controlled via the
value of the conformational cutoff factor to which the default
value was assigned. In contrast, in the anchor-first search
method, the molecule conformation is constructed and energy
minimized one segment at a time, starting from an anchor
segment via an incremental construction approach.33 As the
choice of this one was not obvious primarily in our case, the
multiple fragment option was used (with anchor size ) 5) to
consider several possible anchor fragments. Minimize anchor,
torsion minimize, reminimize layer, and ligand parameters
were also employed during this stage and they were assigned
their standard default value.

The geometric matching algorithm of DOCK superimposes
the ligand atoms onto the spheres that represent the negative
image of the binding site. As recommended for library screen-
ing, the manual matching mode was used so that this step
could be finely controlled through parameters such as node
minimum and maximum, distance minimum, and, above all,
distance tolerance. Neither critical point nor chemical label
was specified. Fifty configurations per ligand building cycle
with the anchor-first search method and 5000 maximum
orientations were generated.

The score evaluates the interactions between the ligand and
the protein target in each complex generated. Three scoring
functions are available in the DOCK4 program:31 energy,
contact, and chemical score. For pose generation, the energy
score was used, as it is reported in the literature to be the
most robust method.22 The gridded calculation mode was used;
otherwise, the score evaluation would be far too slow for
screening purposes.34 Both the intra- and intermolecular terms
were calculated. The bump filter is a parameter that controls
the preliminary checking of the ligand-protein overlap. It was
set to 6 in order to discard the widely overlapping orientations,
but not those that could fit pretty well in the binding site after
optimization. The complexes generated were energy-minimized
using default parameters, except for the maximum iteration
number and the cycle number, which were enlarged to
respectively 100 and 10. As recommended,35 some of the
calculations were repeated using several values of seed, so that
the score variability was assessed.

Rescoring. The scoring step is crucial and is usually
reported as a limitation of the structure-based approach in the
literature, especially with respect to the COX-2 enzyme. In
an attempt to address this issue, we used a rescoring approach
which has proved to be successful in several cases.17d,22a,23 The
docking algorithm and the energy scoring function of DOCK31b,36

were still used to fit compounds to the enzyme binding pocket.
Then, the best scored protein-ligand complex for each mol-
ecule was re-evaluated with other scoring functions. DOCK
contact,31 the different scoring functions available in
Cscore,23f,37,38 i.e., GOLD,39 FlexX,40,41 ChemScore,42 PMF,19 and
the one of SCORE43 were tested. All these scoring functions
are based on force fields or empirical principles, except for
PMF, which derives from a knowledge-based approach. Re-
scoring in this way is technically feasible for large library
screening because tens to thousands of protein-ligand com-
plexes can be scored per minute with the scoring functions
used herein. These scoring functions are briefly detailed in the
Supporting Information for the purpose of comparison.

Protein Structure. The starting data were crystal struc-
tures of murine COX-2 bound with SC-558 (Figure 1), a related
p-bromo derivative of celecoxib (PDB code 1cx2 and 6cox).18
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They were chosen since the cocrystallized ligand has a
structure similar to the inhibitors used in this study. However,
they have been determined with a rather poor resolution of
3.0 Å. A single protein chain was extracted from the tetrameric
crystal structure. The ligand was removed and the ionization
state of the binding site residues was checked. However,
histidine 90 can adopt two virtually indistinguishable orienta-
tions that can only be assigned on the basis of the hydrogen-
bonding pattern with the cocrystallized ligand. But the
conformation of the ligand sulfonamide group cannot be
derived unambiguously from the X-ray diffraction data. Thus,
the two reasonable ionization states (histidine protonated on
Hδ or Hε) were tried. Kollman united-atom charges were
assigned for the protein. The Connolly surface of the binding
site was calculated with MOLCAD44 using a 1.4 Å radius
spherical probe. This surface was used by the program
SPHGEN31a to fill the active site with spheres of varying sizes
(between 1.4 and 4 Å radii). The set of spheres was reduced
manually to a final cluster made up of 57 spheres. In an
attempt to assess the importance of this feature, a more reduce
set of 29 spheres was also tested as well as a set consisting of
26 spheres, the centers of which are located where the heavy
atoms of SC-558 are as it is bound to the enzyme in the crystal
structure. A 23 × 21 × 21 Å box which encloses the sets of
spheres was gridded with a spacing of 0.3 Å. In this way, the
enzyme atoms contributions to the score are stored at each
grid point within a 15 Å cutoff. Energy (steric and electrostatic
terms) and contact scoring grids were used in this study.

Ligands Sets. The 4D energy minimization method imple-
mented in MOE45 was used for generating an initial 3D
structure for each molecule. Then, the ligands were prepared
for docking by means of DOCK tools sdf2mol2 and sybdb.31a

By so doing, the atom types and connectivities were corrected.
The hydrogens were added to ligands, with special caution to
the protonation state of groups assumed to be ionized at a
physiological pH. Partial charges were assigned using the
Gasteiger-Marsili method as implemented in Sybyl.46

Two sets of ligands were used to adjust the parameters and
validate the docking-scoring protocol. First, a set of 355
congeneric COX-2 inhibitors was selected from the literature.
Their structures (Figure 2) are close to that of the cocrystal-
lized ligand SC-558 and the marketed selective COX-2 inhibi-
tors. The molecules belong to nine chemical families according
to their central heterocyclic scaffold, including spiroheptene47

(30 ligands), spiroheptadiene47 (2 ligands), pyrrole48 (22 ligands),
imidazole49 (128 ligands), cyclopentene50 (40 ligands), benzene51

(44 ligands), thiophene52 (1 ligand), pyrazole52 (86 ligands), and
isoxazole53 (2 ligands). The structures of these series of diaryl
heterocycle-type inhibitors can be found in Table 1 of the
Supporting Information. They have been used for QSAR
studies before.15b,d Available inhibition values were measured
with the same biological protocol using human COX-2 recom-
binant enzyme and the detection of the transformed arachi-
donic acid into PGE2 with an immuno-enzymatic test ELISA
(enzyme linked immunosorbent assay).54 The pIC50 values of
these inhibitors range from 4 to 9. The inhibitors with pIC50

> 8 were referred to as active and the other were considered
as moderately active. This limit was chosen with the aim of
obtaining a suitable ratio between the two classes of com-
pounds. It resulted in a set of 64 active ligands, leaving about
82% of the molecular database as a moderately active com-
pounds set.

A second set of compounds was built to evaluate how
successful the protocol is at identifying active ligands among
inactive molecules in as realistic as possible screening condi-
tions. Using the software MOE, 52 2D P-VSA molecular
surface descriptors55 were calculated for 1.2 million compounds
that were gathered from 15 commercial libraries devoted to
screening.28 First, we extracted around 183 000 compounds for
which the descriptors are in the same range (expanded by 20%)
as for the congeneric ligand set. Compounds containing over
15 rotatable bonds or atom types which are not parametrized
in DOCK (mainly metals)31a were also removed. By so doing
the compounds that are the most unlikely to bind to the

enzyme were filtered out. A total of 230 compounds was
eventually extracted according to a maximum molecular
diversity with MOE. Since most of the compounds from the
1.2 million compound library do not probably have inhibitory
potency for the COX-2 enzyme, this subset is comprised of a
priori inactive molecules as well, even if some of them could
be active. Actually, active compound rates are typically less
than 1% for HTS performed on pharmaceutical screening
libraries.24 As a result, in a statistical point of view, no more
than two or three compounds out of the 230 ought to inhibit
COX-2 enzyme. It is very unlikely that this ratio would be
increased by the preliminary filters, because they are too crude
to provide an active ligand enrichment. On the other hand,
this filtering step makes the validation set more realistic and
more demanding for the docking protocol, since the 230
compounds selected have similar characteristics to known
COX-2 inhibitors. This group of 230 compounds is named
inactive ligands in the following. This set was seeded with the
64 most potent inhibitors (pIC50 > 8) and the 75 least potent
inhibitors (pIC50 < 6) of the abovementioned congeneric set.
This set of 369 compounds is referred to as the “screening
validation set”, since it reproduces real screening conditions
where small number of active ligands are searched for in a
large, diverse collection.

Even after optimization, the docking protocol is not fast
enough to allow us to screen millions of compounds considering
the moderate computational power that was available in the
laboratory. Accordingly, as a preliminary investigation, a
subset was extracted from a 1.2 million commercial compound
library that had been collected before.24 Since most of the
selective COX-2 inhibitors discovered so far bear either a
methyl sulfone or an unsubstituted sulfonamide group, 3095
sulfone and 10 616 sulfonamide functionalized molecules were
collected with a substructural search using MOE from the
whole library.

Comparison Criteria. The docking-scoring protocols were
evaluated according to several criteria. First, binding modes
generated for the cocrystallized ligand as well as for the
inhibitors of the congeneric set were compared with the crystal
structure of the SC-558 bound to COX-2. As the inhibitory
potencies of ligands belonging to the congeneric set have been
determined experimentally, the correlation between these
values and the calculated scores can be considered. However,
due to the approximations of the employed methods, such
correlation is likely to be poor. In addition, the results for the
screening validation set can only be compared qualitatively.
For these reasons, a qualitative way of comparison based on
the compound ranking was preferred.

As 64 inhibitors have a pIC50 > 8 in the congeneric set, after
scoring the 64 first-ranked molecules were retrieved and the
ratio of active compounds among them was assessed. Ideally,
all these 64 best-scored molecules should be active, but in
reality only a fraction of them are true positive compounds
(i.e., active compounds for which high scores are evaluated),
whereas the other are false-positive compounds (i.e. high scores
are predicted for them while they have no inhibitory potency).
The same kind of analyses were performed on the screening
validation set considering that the number of top-ranked
compounds and the number of active compounds in the set is
the same. However, three molecules classes were discerned:
the active, moderately active ligands, and inactive compounds.

To evaluate the ability of the docking-scoring protocols to
help discover active compounds, the enrichment factor was
calculated by dividing the fraction of the selected molecules
that were active by the fraction of active compounds in the
source pool:

Noteworthy, the possible enrichment values depend strongly
on the initial database size and composition. Therefore, the
maximum possible enrichment is also reported for the purpose

EF ) (hitssampled set/Nsampled set)/(hitstotal database/Ntotal database)

EFmax ) Ntotal database/hitstotal database
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of comparison. It is calculated using the function described
above with the assumption that all possible active compounds
were selected.

Material. Ligand and protein preparation, complex visu-
alization, and CScore calculations were performed with Sybyl6.8
running on a SGI workstation. The SCORE estimates were
also performed on the workstation. The docking calculations
were carried out with DOCK on PCs running the Linux
operating system, as well as the diversity calculations using
MOE. In the following, calculation times are reported for a
2GHz P4 Linux box.

Biological Testing. Samples of the selected compounds
were obtained from various suppliers.56-58. They have been
tested using a COX (human) inhibitor screening assay accord-
ing to the protocol recommended by the manufacturer.25
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